ground state energy

美 [ɡraʊnd steɪt ˈenərdʒi]英 [ɡraʊnd steɪt ˈenədʒi]
  • 网络基态能量;基态能
ground state energyground state energy
  1. The Relation on Space Symmetry with System Ground State Energy

    系统基态能量与空间对称性的关系

  2. Ground State Energy of a Pollution State in Polyatomic Polar Crystals

    多原子极性晶体系统中杂质态的基态能量

  3. That is the ground state energy of atomic hydrogen .

    同时也是氢原子基态的能量值。

  4. The relations of the ground state energy and isotropic oscillator parameter

    同调谐振子参数与基态能量的关系

  5. Effect of LO Modes on the Ground State Energy of Polaron

    多支LO模对极化子基态能量的影响

  6. The Ground State Energy of a Quantum Dot with Impurity

    含类氢杂质的量子点的基态能

  7. Ground state Energy and Effective mass of a Polaron in a Crystal slab

    极性晶体板中极化子的基态能量和有效质量

  8. Ground state energy level of Si base quantum wells detected by admittance spectroscopy

    导纳谱研究两类Si基量子阱基态子能级的性质

  9. Solving ground state energy and wave function of a linear harmonic oscillator by Euler equation

    用泛函Euler方程求解线性谐振子的基态能量和波函数

  10. The Relationships between Topological Indices and Ground State Energy of Beryllium Clusters

    铍小团簇的基态能量与拓扑指数的相关性

  11. A Double-Parameter Variational Calculation on the Ground State Energy of Atom Lithium

    关于锂原子基态能量的双参数变分计算

  12. The Ground State Energy of Shallow Donor Impurities near the Surface of Semi-infinite Crystal

    半无限晶体近表面内浅态施主杂质的基态能量

  13. Variational Calculation of the Ground State Energy of Nitrogen and Nitrogen-Like Atoms

    氮原子和类氮离子基态能量的变分计算

  14. The relativistic corrections for ground state energy of the positronium negative ion

    正电子素负离子(Ps~-)基态能级的相对论修正

  15. The ground state energy of magnetopolaron was calculated .

    计算了磁极化子的基态能量。

  16. Ground State Energy and Effective Mass of a Strong Coupling Optical Polaron in N-Dimensional Polar Crystal

    N维极性晶体中强耦合极化子的基态能量及有效质量

  17. A new concise method was presented for the calculation of the ground state energy of an electromagnetic field matter coupling system .

    采用一种简洁的方法讨论电磁场与物质耦合系统的能量本征态,在新的理论基础上给出关于Casimir效应物理根源的新的定性解释。

  18. Quantum Dot Confinement Effect on the Ground State Energy and Binding Energy of a Bound Exciton

    量子点限制对束缚激子基态能和结合能的影响

  19. Calculation of the ground state energy of excitons in ZnO quantum dots by two-body method

    二体法计算ZnO量子点中激子的基态能

  20. In this paper , the ground state energy per unit cell , spin correlation function and spin gap are calculated .

    计算了单个晶胞的基态能、自旋关联函数以及自旋能隙。

  21. The ground state energy of the hypernucleus _ λ ~ 6li

    ∧~6li超核的基态能量

  22. The variable metric algorithm for ground state energy of ionized-donor-bound excitons in semiconductors

    半导体束缚激子基态能的变尺度法

  23. For the weak coupling and intermediate coupling cases , the ground state energy and effective mass of the polaron are derived .

    对弱耦合和中间耦合情形,导出了极化子基态能量和有效质量。

  24. The explicit expression of the ground state energy and the persistent current of the system are obtained by a second order variational perturbation approximation method .

    在二级微扰变分近似下得出了其基态能量表达式和基态持续电流表达式,并在库仑排斥势趋于无穷大的假设下,得到了系统Kondo温度及持续电流的数值计算结果。

  25. The absolute value of the ground state energy of the strong-coupling magnetopolaron will rise with increasing the cyclotron frequency .

    磁极化子的基态能量的绝对值随着磁场的回旋频率的增加而增加;

  26. Variational Calculations of Ground State Energy and Wave Function of N ~ ( 5 + ) and O ~ ( 6 + ) Ion Using Matlab

    基于Matlab的N~(5+)和O~(6+)基态能量与波函数的变分计算

  27. The ground state energy and the wave function of a linear harmonic oscillator are solved by Euler equation comforted to functional extremum .

    利用泛函极值满足的Euler方程,解出了线性谐振子的基态能量和波函数。

  28. We deduced the variation law of the ground state energy , the variation frequent contacts λ, the self-trapping energy with the slab thickness .

    得出了束缚极化子振动频率、自陷能随膜厚的变化规律。

  29. Numerical calculation illustrated that the ground state energy increases with the increasing confinement strength , and decreases with increasing of electric field strength and wire length .

    数值计算结果表明:抛物量子线中强耦合极化子的基态能量Eo随约束强度ω0的增强而增大,而随电场强度F和量子线长Z的增大而单调减小。

  30. The results show that the ground state energy and the excitation energy of bulk polaron may be written as a series of α the coupling constant .

    结果表明,体极化子的基态能量和激发能量表示为耦合常数α的幂级数。